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Motivation

• Complex systems almost inevitably contain bugs.

• Program testing can be used to show the presence 
of bugs, but never to show their absence!
                                               Edsger W. Dijkstra
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What is Interactive Proof?

• Work in a logical formalism

• precise definitions of concepts

• formal reasoning system

• Construct hierarchies of definitions and proofs

• libraries of formal mathematics

• specifications of components and properties
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Interactive Theorem Provers

• Based on higher-order logic

• Isabelle, HOL (many versions), PVS

• Based on constructive type theory

• Coq, Twelf, Agda, ...

• Based on first-order logic with recursion

• ACL2
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The LCF  Architecture

• A small kernel implements the logic and can 
generate theorems.

• All specification methods and automatic proof 
procedures expand to full proofs.

• Unsoundness is less likely with this architecture

• ... but the implementation is more complicated, and  
performance can suffer.

• Used in Isabelle, HOL, Coq but not PVS or ACL2.
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Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

• User interface

• Proof language

• Automation

• Existing libraries

• Tools
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Isabelle

• Isabelle is a generic interactive theorem prover, 
developed by Lawrence Paulson (Cambridge) and 
Tobias Nipkow (Munich). First release in 1986.

• Integrated tool support for

• Automated provers

• Counterexamples

• Code generation

• LaTeX document generation
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Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

• No distinction between terms and formulas

• ML-style functional programming

“HOL = functional programming + logic”



Basic Syntax of Formulas
formulas A, B, ... can be written as

(A) t = u ~A

A & B A | B A --> B

A <-> B ALL x. A EX x. A

(Among many others)

Isabelle also supports symbols such as 
≤ ≥ ≠ ∧ ∨ → ↔ ∀ ∃
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Some Syntactic Conventions

In ∀x.  A ∧ B, the quantifier spans the entire formula

Parentheses are required in A ∧ (∀x y. B)

Binary logical connectives associate to the right:  A→ 
B → C is the same as A→ (B → C)

¬ A ∧ B = C ∨ D is the same as ((¬ A) ∧ (B = C)) ∨ D
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Basic Syntax of Terms

• The typed λ-calculus: 

• constants, c 

• variables, x and flexible variables, ?x

• abstractions λx. t 

• function applications t u

• Numerous infix operators and binding operators 
for arithmetic, set theory, etc.
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Types

• Every term has a type; Isabelle infers the types of 
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type 
classes (inspired by the Haskell language) that 
allows sophisticated overloading.

• A formula is simply a term of type bool.

• There are types of ordered pairs and functions.

• Other important types are those of the natural 
numbers (nat) and integers (int).
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Product Types for Pairs

•(x1, x2) has type τ1 * τ2 provided xi :: τi 

•(x1, ..., xn-1, xn) abbreviates (x1, ..., (xn-1, xn))

• Extensible record types can also be defined.
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Function Types

• Infix operators are curried functions

• + :: nat => nat => nat

• & :: bool => bool => bool

• Curried function notation: λx y. t

• Function arguments can be paired

• Example: nat*nat => nat

• Paired function notation: λ(x,y). t
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Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0,  Suc n

• operators include + - * div mod

• relations include < ≤ dvd (divisibility)

• int: the integers, with + - * div mod ...

• rat, real:  + - * / sin cos ln ...

• arithmetic constants and laws for these types



HOL as a Functional Language

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

recursive data type of lists

recursive functions 
(types can be inferred)



Proof by Induction

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

use it to simplify other formulas

two steps: induction 
followed by automation

end of proof

declaring a lemma



Example of a Structured Proof

FILE “DemoList.thy” 1
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begin
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Example of a Structured Proof

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

• base case and inductive 
step can be proved 
explicitly

• Invaluable for proofs 
that need intricate 
manipulation of facts


