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Motivation

® Complex systems almost inevitably contain bugs.

® Program testing can be used to show the presence

of bugs, but never to show their absence!
Edsger W. Dijkstra
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® Work in a logical formalism
* precise definitions of concepts
* formal reasoning system

® Construct hierarchies of definitions and proofs
* l|ibraries of formal mathematics

* specifications of components and properties
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Interactive Theorem Provers

® Based on higher-order logic
* |[sabelle, HOL (many versions), PVS
® Based on constructive type theory
e Coq, Twelf,Agda, ...
® Based on first-order logic with recursion

e ACL2
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The LCF Architecture

A small kernel implements the logic and can
generate theorems.

All specification methods and automatic proof
procedures expand to full proofs.

Unsoundness is less likely with this architecture

... but the implementation is more complicated, and
performance can suffer.

Used in Isabelle, HOL, Coq but not PVS or ACL2.
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Theorem Provers: Characteristic Features

Logic (higher-order, type theory etc.)
Correctness (LCF vs. non-LCF)

User interface

Proof language

Automation

Existing libraries

Tools
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Isabelle

® |sabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First release in 1986.

® |ntegrated tool support for
Automated provers
Counterexamples
Code generation

LaTeX document generation
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Higher-Order Logic

First-order logic extended with functions and sets
Polymorphic types, including a type of truth values
No distinction between terms and formulas

ML-style functional programming

“HOL = functional programming + logic”




Basic Syntax of Formulas

formulas A, B, ... can be written as
(A) t=u ~A
A s B A | B A-->B

A<->B ALL x. A EX x.A

(Among many others)

Isabelle also supports symbols such as
<2FAV IV
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Some Syntactic Conventions

In vx. A A B, the quantifier spans the entire formula

Parentheses are required in A A (Vx Y. B)

Binary logical connectives associate to the right: A—
B — Cis the sameas A— (B = ()

"AAB=CvDisthesameas ("WA)A(B=C)) vD
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Basic Syntax of Terms

® The typed A-calculus:
* constants,c

e variables, x and flexible variables, ?x

* abstractions AX.t
* function applications t u

® Numerous infix operators and binding operators
for arithmetic, set theory, etc.
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Types

Every term has a type; Isabelle infers the types of
terms automatically. Ve write 7 :: 7

Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

A formula is simply a term of type bool.
There are types of ordered pairs and functions.

Other important types are those of the natural
numbers (nat) and integers (int).
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Product Types for Pairs

* (x1, x2) has type 71 + 72 provided x; ..
® (X1, .. Xn1, xXn) abbreviates (x1, .., (Xn-1, Xn) )

* Extensible record types can also be defined.
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Function Types

® |nfix operators are curried functions
® + :: nat => nat => nat
* & :: bool => bool => bool
* Curried function notation: Ax ). ¢

® Function arguments can be paired

e Example:nat*nat => nat

* Paired function notation: A(x,)). ¢
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Arithmetic Types

® nat:the natural numbers (nonnegative integers)
e inductively defined: 0, Suc n
e operatorsinclude + - * div mod
e relations include < < dvd (divisibility)

® int:theintegers,with + - * div mod ..

® rat,real: + - * / sin cos 1n..

® arithmetic constants and laws for these types




HOL as a Functional Language

recursive data type of lists

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
Nil ys = ys"
(Cons x xs) ys = Cons x (app xs ys)"

where
il = Nil"
"rev (Gons x xs) = app (rev xs) (Cons x Nil)"

recursive functions
(types can be inferred)




Proof by Induction

declaring a lemma

use it to simplify other formulas

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

two steps: induction
followed by automation

end of proof




of a Structured Proof

lemma "app xs Nil = xs"
proof (induct xs)
case Nil
show "app Nil Nil = Nil"
by auto
next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto
qed
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Example of a Structured Proof

lemma "app xs Nil = xs"
proof (induct xs)
case Nil

® base case and inductive show "app Nil Nil = Nil"
by aut
step can be proved y aturo
explicitly

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"

Invaluable for proofs by auto
that need intricate qed
manipulation of facts




