
Interactive Formal Verification
1: Introduction

Tjark Weber
(Slides: Lawrence C Paulson)

Computer Laboratory
University of Cambridge

Motivation

Motivation

• Complex systems almost inevitably contain bugs.

Motivation

• Complex systems almost inevitably contain bugs.

Motivation

• Complex systems almost inevitably contain bugs.

• Program testing can be used to show the presence
of bugs, but never to show their absence!
 Edsger W. Dijkstra

What is Interactive Proof?

What is Interactive Proof?

• Work in a logical formalism

• precise definitions of concepts

• formal reasoning system

What is Interactive Proof?

• Work in a logical formalism

• precise definitions of concepts

• formal reasoning system

• Construct hierarchies of definitions and proofs

• libraries of formal mathematics

• specifications of components and properties

Interactive Theorem Provers

Interactive Theorem Provers

• Based on higher-order logic

• Isabelle, HOL (many versions), PVS

Interactive Theorem Provers

• Based on higher-order logic

• Isabelle, HOL (many versions), PVS

• Based on constructive type theory

• Coq, Twelf, Agda, ...

Interactive Theorem Provers

• Based on higher-order logic

• Isabelle, HOL (many versions), PVS

• Based on constructive type theory

• Coq, Twelf, Agda, ...

• Based on first-order logic with recursion

• ACL2

The LCF Architecture

The LCF Architecture

• A small kernel implements the logic and can
generate theorems.

The LCF Architecture

• A small kernel implements the logic and can
generate theorems.

• All specification methods and automatic proof
procedures expand to full proofs.

The LCF Architecture

• A small kernel implements the logic and can
generate theorems.

• All specification methods and automatic proof
procedures expand to full proofs.

• Unsoundness is less likely with this architecture

The LCF Architecture

• A small kernel implements the logic and can
generate theorems.

• All specification methods and automatic proof
procedures expand to full proofs.

• Unsoundness is less likely with this architecture

• ... but the implementation is more complicated, and
performance can suffer.

The LCF Architecture

• A small kernel implements the logic and can
generate theorems.

• All specification methods and automatic proof
procedures expand to full proofs.

• Unsoundness is less likely with this architecture

• ... but the implementation is more complicated, and
performance can suffer.

• Used in Isabelle, HOL, Coq but not PVS or ACL2.

Theorem Provers: Characteristic Features

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

• User interface

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

• User interface

• Proof language

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

• User interface

• Proof language

• Automation

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

• User interface

• Proof language

• Automation

• Existing libraries

Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)

• Correctness (LCF vs. non-LCF)

• User interface

• Proof language

• Automation

• Existing libraries

• Tools

Isabelle

Isabelle

• Isabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First release in 1986.

Isabelle

• Isabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First release in 1986.

• Integrated tool support for

• Automated provers

• Counterexamples

• Code generation

• LaTeX document generation

Higher-Order Logic

“HOL = functional programming + logic”

Higher-Order Logic

• First-order logic extended with functions and sets

“HOL = functional programming + logic”

Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

“HOL = functional programming + logic”

Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

• No distinction between terms and formulas

“HOL = functional programming + logic”

Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

• No distinction between terms and formulas

• ML-style functional programming

“HOL = functional programming + logic”

Basic Syntax of Formulas
formulas A, B, ... can be written as

(A) t = u ~A

A & B A | B A --> B

A <-> B ALL x. A EX x. A

(Among many others)

Isabelle also supports symbols such as
≤ ≥ ≠ ∧ ∨ → ↔ ∀ ∃

Some Syntactic Conventions

Some Syntactic Conventions

In ∀x. A ∧ B, the quantifier spans the entire formula

Some Syntactic Conventions

In ∀x. A ∧ B, the quantifier spans the entire formula

Parentheses are required in A ∧ (∀x y. B)

Some Syntactic Conventions

In ∀x. A ∧ B, the quantifier spans the entire formula

Parentheses are required in A ∧ (∀x y. B)

Binary logical connectives associate to the right: A→
B → C is the same as A→ (B → C)

Some Syntactic Conventions

In ∀x. A ∧ B, the quantifier spans the entire formula

Parentheses are required in A ∧ (∀x y. B)

Binary logical connectives associate to the right: A→
B → C is the same as A→ (B → C)

¬ A ∧ B = C ∨ D is the same as ((¬ A) ∧ (B = C)) ∨ D

Basic Syntax of Terms

Basic Syntax of Terms

• The typed λ-calculus:

• constants, c

• variables, x and flexible variables, ?x

• abstractions λx. t

• function applications t u

Basic Syntax of Terms

• The typed λ-calculus:

• constants, c

• variables, x and flexible variables, ?x

• abstractions λx. t

• function applications t u

• Numerous infix operators and binding operators
for arithmetic, set theory, etc.

Types

Types

• Every term has a type; Isabelle infers the types of
terms automatically. We write t :: τ

Types

• Every term has a type; Isabelle infers the types of
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

Types

• Every term has a type; Isabelle infers the types of
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

• A formula is simply a term of type bool.

Types

• Every term has a type; Isabelle infers the types of
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

• A formula is simply a term of type bool.

• There are types of ordered pairs and functions.

Types

• Every term has a type; Isabelle infers the types of
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

• A formula is simply a term of type bool.

• There are types of ordered pairs and functions.

• Other important types are those of the natural
numbers (nat) and integers (int).

Product Types for Pairs

Product Types for Pairs

•(x1, x2) has type τ1 * τ2 provided xi :: τi

Product Types for Pairs

•(x1, x2) has type τ1 * τ2 provided xi :: τi

•(x1, ..., xn-1, xn) abbreviates (x1, ..., (xn-1, xn))

Product Types for Pairs

•(x1, x2) has type τ1 * τ2 provided xi :: τi

•(x1, ..., xn-1, xn) abbreviates (x1, ..., (xn-1, xn))

• Extensible record types can also be defined.

Function Types

Function Types

• Infix operators are curried functions

• + :: nat => nat => nat

• & :: bool => bool => bool

• Curried function notation: λx y. t

Function Types

• Infix operators are curried functions

• + :: nat => nat => nat

• & :: bool => bool => bool

• Curried function notation: λx y. t

• Function arguments can be paired

• Example: nat*nat => nat

• Paired function notation: λ(x,y). t

Arithmetic Types

Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0, Suc n

• operators include + - * div mod

• relations include < ≤ dvd (divisibility)

Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0, Suc n

• operators include + - * div mod

• relations include < ≤ dvd (divisibility)

• int: the integers, with + - * div mod ...

Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0, Suc n

• operators include + - * div mod

• relations include < ≤ dvd (divisibility)

• int: the integers, with + - * div mod ...

• rat, real: + - * / sin cos ln ...

Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0, Suc n

• operators include + - * div mod

• relations include < ≤ dvd (divisibility)

• int: the integers, with + - * div mod ...

• rat, real: + - * / sin cos ln ...

• arithmetic constants and laws for these types

HOL as a Functional Language

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

recursive data type of lists

recursive functions
(types can be inferred)

Proof by Induction

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

use it to simplify other formulas

two steps: induction
followed by automation

end of proof

declaring a lemma

Example of a Structured Proof

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

Example of a Structured Proof

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

• base case and inductive
step can be proved
explicitly

Example of a Structured Proof

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

• base case and inductive
step can be proved
explicitly

• Invaluable for proofs
that need intricate
manipulation of facts

